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USE OF THE ROBES PRINCIPLE IN SOLVING THREE-D~~E~SIO~AL PROBLEMS OF THE 
THEORY OF ELASTICITY* 

P.I. PERLIN 

The Roben principle is used in solving the integral equations (IE) corresponding to the 
fundamental spatial problems of the theary of elasticity by the method of successive approxi- 
mations. It has been established that a possible divergence of the process of successive 
approximations caused by the lack of accuracy of the computational schemes does not lead to 
the solution diverging in the stresses. It has been shown that applying the method of suc- 
cessive approximations to the IE of the second interior problem when the boundary conditions 
are not selfequilibrated, yields a solution which converges in terms of the stresses, cor- 
responding to specific selfequilibrated boundary conditions. A method of solving the boundary 
value problems is proposed in which the corresponding IE are situated in the spectrum and 
conditions for their solvability are not satisfied. 

Let us consider the Fredholm IE of the second kind 

cp (2) - Al k (2, Y) 'P (Y) dy = f(t). (i) 

Let h=i be the eigenvalue smallest in modulus. We 
method of successive approximations. To do this, we shall 
of a series 

shall solve the IE (1) using the 
write the function cp(z) in the form 

‘p(J) = 5 a%, (2) 
n=o 

(2) 

Fig.1 Fig.2 

Then we arrive at the following recurrence relations: 

%I (I) = 5 k (2, Y) ‘~n-1 (y) dy, n = 1, 2, . . .; ‘to (5) = f (4 . (3) 

The Roben principle /l/ consists of the assertion that constants ~<1,a exist and an 
integer N such that when n>N and m>n, 

I %I (4 - %I tz) I < mn * (4) 
From (4) it follows that (P,,(Z) tends uniformly to the limit as n-+m, and the limit 

(we denote it by w*(x)) is an eigenfunction of IE (1) at the point x=1. 

If the right-hand side of (1) is orthogonal to the eigenfunctions of the allied equation, 
then the limit in question will be equal to zero and series (2) will lead to construction of 
the solution of IE. 

The same arguments hold when the eigenvalue smallest in modulus is h=-i. In this 
case we consider the limit 

lim (-i)“% (z) = s++* (5) (5) 

and 'p_&* (2) is an eigenfunction at the point J.=--1. 

Let us express the above assertions differently. Let N be the number of terms retained 
in (2). Then we obtain the following expression for the sum: 

rPN (=f = 5 hnYp,(I) = al (=f Jr P(z) + Ne,*(=) (6) 
a=0 
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where O,(z) is a function, EN (z) - 0 as A' - co, 'P*(s) is an eigenfunction when ?,=- 1 or -1, 
found as the result of the passage to the limit. 

Thus from (6) it follows that violating the conditions of orthogonality of the right- 

hand side of the IE by the eigenfunctions of the allied equation, leads to the divergence of 

the consecutive approximations. 

We have said above that the Fredholm IE of the second kind are under consideration. It 

therefore seems natural that we should also consider other IE (e.g. the singular IE),provided 

that they have the same spectral properties. Amongst such IE we have those corresponding to 

the first and second boundary value problems of the theory of elasticity /2/. 

In problems with a physical content, where the IE is obtained from the representation of 

the function sought in the form of one or other potential, it is best to consider the IE 

situated within the spectrum also when the conditions of their solvability are violated. The 
problem is that at times the solution of the integral equation itself is of no interest, and 

we must determine some functional. For example, in solving the second interior problem of 

the theory of elasticity we need to find the components of the stress tensor, while the term 

'p* (2) in (6) corresponds to the displacement of the body as a rigid entity and does not 

affect the stresses. Thus irrespective of the fact that the consecutive approximationsdiverge, 

the algorithm may lead to constructing a solution of the boundary value problem corresponding, 

naturally, to boundary conditions different from the initial conditions and obtainedbyapply- 

ing, in a special manner, a distributed load determined by the principal vector andthemoment 

of external forces. 

In order to illustrate what has just been said, we shall consider the axisymmetricproblem 

of the theory of elasticity for a sphere in the case when the load is applied to the left- 

hand hemisphere and has a single component (along the axis of symmetry) 

CI = 1 - C"S 0 (--n/2 < 0 < 0) 

(Fig.1). The integral equation of the second fundamental problem /2/ was solved using the 

regular representations of singular integrals /3/. Let us compare the sums (6) obtained using 

20 and 40 terms and the corresponding values of the stresses. At one ofthepoints of the 

boundary surface the sum differ from each other by a factor of two, and the stresses (at one 

of the internal points) by 4%. The dashed line shows the envelope of the boundary stresses 

corresponding to the equation obtained. The stresses are calculated by subtracting from the 

initial boundary conditions the stresses equal to the principal vector of applied forces 

divided by the total surface area. 

A study of such problems (where the conditions of solvability of the initial problem and 

hence of the corresponding integral equation, are violated), may be useful. Let us assume 

that the solution of the mixed problem is obtained by expanding in a series the load applied 

to the part of the boundary at which the displacements are specified. The method given no 

longer makes it necessary to construct the selfequilibrated harmonics, and this can con- 

siderably simplify the execution of the algorithm. The result of imposing the conditions on 

the principal vector and vector-moment will be that the additional terms will cancel during 

the summation; therefore the boundary conditions in terms of the stresses will be satisfied. 

Since, as was said in /3/, the computational schemes are inaccurate, even in the case 

when the conditions of solvability of the IE are satisfied (when the corresponding integrals 

are exactly equal to zero), the consecutive approximations may diverge. We know that every 

function 'Pn (x) must be orthogonal to the eigenfunction of the allied equation. The error 

present in the computational scheme can lead to violation of these conditions even at the 

first stage, and it will get larger as the number of iterations increases. Exceptions are 

problems possessing one or other form of symmetry. For example, in the problems of the theory 

of elasticity, the presence of three planes of geometrical and force symmetry is sufficient 

(naturally, when the symmetry is apparent in the discretization of the surface). 
In order to ensure the convergence of the iterative process, we proposed in /3/ that 

every iteration step be corrected as follows: 

rp,h' (z) =- 'Pn (2) - 'p' (2) 5 %I (Y) q* (Y) G * (7) 

Here 'p* (I) is the eigenfunction of the allied equation and the expression given con- 

tains only a single eigenfunction for simplicity. 

In the general case we must carry out the summation over all eigenfunctionsofthe allied 
equation. In the case of the second fundamental problem of the theory of elasticitywe should 
introduce six terms, and this becomes fairly bulky. In problems with axial symmetry only a 

single term is retained. 
We shall treat the inaccuracy of the computational scheme as an error introduced 

originally into the boundary conditions, and then realize the algorithm accurately. Then, 

from formula (6) it follows that the process diverges (since the boundary conditions in their 
altered form will not satisfy the conditions of solvability of the IE). However, for the 
problems in question (when the Roben principle is applicable), it is found possible to obtain 
a converging solution for the quantities of interest from the divergent soltuions of the IE. 
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We have solved the axisymmetric problem of the theory of elasticity for a cylinder with 
rounded ends (Fig.2), with tangential loads applied to cylindrical strips. The type of load 
chosen was such that a change in the discretization of the computational scheme nearthepoints 
at which tangential stresses were largest, cause a different degree of non-equilibration of 
the external loads. A coarse (lo), intemediate (2O) and fine f3Of discretizationwas employed. 
The table shows the results of computing the tangential component of the term (pn(s) at the 
15-th iteration, of the sum with 15 terms, and of the stresses at some internal point D after 
8 and 15 iterations. The brackets contain the corresponding results from the computations 
using Eq.(7). 

The data given show that when the iterative process is realized directly the solution of 
IE definitely diverges, but nevertheless leads to converging values of the stresses, which 
are practically identical to those obtained when the correction is applied at every interaction 
step and the solution of IE itself converges. 

The Roben principle makes it possible to propose a special method of estimating the 
accuracy of the computational schemes usedtosolve IE. Let us assume that geometricalsymmetry 
exists. The eigenfunctions should reflect this symmetry. We can therefore recommend that 
analysis of the functions ~~(2) be carried out (for sufficiently large n). In the example 
described above, the values of the functions vn(z) at the points FJ and C were practically 
identical, and their ratio to the values at the centre of the side surface (A) remained 
constant (to within 4%) for all discretizations, although the functions themselves differed 
by three orders of magnitude 

We know /4/ that the IE of the theory of elasticity for an incompressible medium are 
identical with the IE for a linearized flow of a viscous incompressible fluid. They have the 
same spectral properties as the IE of the theory of elasticity (for any value of Poisson's 
ratio), but in addition they have a resolvent pole at the point h= 1 with a single 
corresponding eigenfunction coinciding with the vector of constant modulus directed along 
the normal to the boundary surface. 

Below, we shall limit ourselves for simplicity to the cases where we have three planes 
of geometrical and force symmetry, and this practically annihilates the pole of the resolvent 
at the point I= --1. Therefore, it is possible to use the Robens principle. All this enables 
us to propose a method of estimating the accuracy of the computational schemes for solving 
the IE of the second fundamental problem. Apart from carrying out the computations at the 
given value of Poisson's ratio, we must also carry out the computations for an incompressible 
medium. The deviation of the function Pi from the normal to the surface and the difference 
in the magnitudes, can serve as the measure in estimating the error. 

We shall consider, as an example, theaxisymmetric problem of the theory of elasticity in 
the case when the surface is formed by rotating a square about its diagonal. The surface is 
not smooth (it has conical apices and a rib), and we therefore have no reason to speak of the 
convergence of themethod of successive approximations and hence of the applicability of the 
Roben principle. Bowever, the computations carried out under sufficiently fine discretization 
in the neighbourhood of the non-regular points have shown that over the major part of the 
surface (except for a small neighbourhood of the irregular points) the deviation of the func- 
tion qn from the normal did not exceed one degree, and the difference in the magnitude did not 
exceed 3%. 

In conclusion we shall turn our attention to the solution of the outer Dirichlet problem 
for the Laplace equation in the first outer problem of the theory of elasticity. The 
traditional approach, consisting of representing the required function in the form of the 
potential of double layer and of a generalized elastic potential of the double layer, leads to 
IE which have no solutions. Modifications were sugqested in /5-9/ to the representations, 
leading to solvable IE. 

Below we give a method of solving the problems in question based on the Roben principle. 
We require to find the harmonic function u&)(p~D-) satisfying the boundary condition 

efa)=f(d, g=aD. 
We solve the corresponding IEby successive approximations and arrive, as a result, at 

the eigenfunction which we shall denote by v*(g). We further introduce some function a1 fPf I 
harmonic in the region D- and find its trace on BD, denoting it by f,(q). Once again we solve 
the IE by successive approximations, but using, in this case, the boundary condition h w 
We denote the eigenfunction obtained in the iteration process by g**(q). Since the IE has only 
two linearly independent eigenfunctions, it follows that the ratiolv*(,I)/q** tn) must be a 
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constant quantity. We denote this ratio by c. 

In the final stage we should consider the boundary value problem for the function UP (P) : 
u2 (P) = u (P) - cu, (P). The process of successive approximations for this function will lead to a 
convergent algorithm. The solution will be completed by transfer to the function U(P). 

In solving the problem of the theory of elasticity, we must begin with the six partial 
solutions of the boundary value problems and expand the eigenfunction obtained from the 
initial boundary condition in terms of the functions obtained from the partial solutions. 

We note that the method described here was used in solving the second outer problem for 
an incompressible medium in /LO/. 
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SOLUTION OF THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY USING 
THE MONTE CARLO METHOD* 

B.E. POBEDRYA and P.V. CHISTYAKOV 

TWO versions of the Monte Carlo (MC) method for solving problems of the theory of 
elasticity are discussed. One uses the process of random walk over spheres to solve the 
Lam& equations, and the other represents the quantity sought in the form of multiple integrals 
(e.g. when solving the Cauchy problem fox the wave equation of the theory of elasticity in an 
unbounded space). 

The process of random walk over spheres was proposed in /l/ for solving the Laplace 
equation, and was later used in more complicated problems (an analysis of the work done on 
this subject can be found in /2, 3,'). A solution of the boundary value problem for the Lam; 
equation was studied for the plane case in 141, and the possibility of using the MC method 
for the problems of flexure of plates was discussed in /3, 5/**.(**A further development of 
methods of solving the problems of plate flexure can be found in the paper by V.M. Ivanov 
and O.Yu. Kulchitskii. Development and study of effective methods of random walk over circles 
for solving problems of plate flexure and the plane problem of the theory of elasticity. 
Deposited at VINITI, ~0.3270-83, Leningrad, 1983.) Theorems were given in /6/, enabling the 
initial system of elliptic equations to be replaced by a system of integral equations which 
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